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Abstract 
 

Robot programming often sparks students’ interest in programming, but it is not easy for them 
to program both procedure and reactivity of robot movements that are essential requirements. 
In this study, we reviewed in detail a new programming language, State-Based Squeak. It 
allows novice students to implement both procedure and reactivity of robots easily. The effect 
of this new language on robot programming education was also examined using a group of 28 
middle school students. According to the results of analyzing the students’ understanding of 
programming, reading and programming abilities the group that used State-Based Squeak (the 
experimental group) showed a higher completion ratio than the other (control) group. The 
significance of this study is that a robot programming language has been developed that 
addresses the concepts of both procedure and reactivity in such a way that middle school 
students can more easily learn how to program robots, something that is often difficult to 
attempt even for professional programmers. 
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1. Introduction 

Programming education helps students enhance their problem solving abilities [1] and 

develop higher-order thinking [2]. Therefore, programming is taught not only in university as 
a major field but also in middle school [3][4]. In Korean “Revised Curriculum 2007”, 
programming was introduced into the Korean middle school informatics curriculum. Japan 
has also included programming into their curriculum as a mandatory course. The 
programming education included in Japanese middle school curriculum is primarily aimed at 
teaching the principles of measurement and control systems using a computer [5][6].  

Robot programming is one of the most popular topics among various types of educational 
programming activities because robots attract students’ interest and curiosity [7]. However, 
programming is not easy for novice students because the programming language and 
environment tend to be designed for professionals [8]. In order to implement a robot program, 
students need to consider thoroughly two key aspects, namely procedure and reactivity [9]. 
That is, procedure of the robot’s preplanned behavior and reactivity to the events that the robot 
meets with must be considered for mobilizing the robot. However, the procedural language 
and reactive language are in two different paradigms, so it has been difficult to consider these 
two features simultaneously in a programming language for robots [10][11][12]. It is hard for 
novice programmers to describe reactivity in the procedural language, and conversely, to 
describe the procedures in the reactive language [13]. 

This study developed State-based programming language that can specify the procedure and 
reactivity based on Squeak, which is a programming language for novices. The effect of this 
new programming language on educational robot activities is also examined.  

Chapter 2 will review the characteristics of programming languages required for 
educational robot activities. Chapter 3 will explain the developed state-based programming 
language and compare its programs with ones in the other paradigms. Chapter 4 will describe 
the method for examining the effect of the program developed in this study. Finally, Chapter 5 
will discuss the effect the program had upon the middle school students used in the study. 

2. The Rationale of the Developed Robotics Specific Features 

This section deals with the features of programming languages that are required for 
educational robot activities. Additionally, the requirements for developing robot programming 
languages for novice students are also defined. 

2.1 Procedure and Reactivity of Robot programming 

Educational robot activities such as robot competitions augment students’ motivation and 
creative thinking [7][14][15]. Since programming activities in general entail the use of 
abstractions such as numbers, letters, signs and objects, students experience difficulty in 
manipulating or designing programs. However, because robot programming involves the use 
of physical metaphors, students can plan robot behaviors by turning themselves into robots 
[3][4][16]. Programming is a cognitive activity that requires the creation of problem solving 
strategies [17]. Programming a system that implements planned behaviors of a robot is an 
activity that greatly contributes to the development and improvement of problem solving 
abilities [18]. 
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Robots are programmed to be mobilized in unpredictable physical world [19][20]. A 
mobile robot not depends on an ideal environment that allows it to move about as programmed, 
but reactivity must also be considered to make the robot react appropriately to the various 
situations it may face because the physical space is subject to change [12][15]. Robot 
reactivity refers to the robot’s ability to identify the situation of its surrounding environment 
using its sensors and to select the appropriate behavior. Accordingly, reactive programming 
entails setting the rules and protocols that determine the responses. 

There are two key aspects in robot programming that must be addressed: “procedure” and 
“reactivity” [9]. Its procedure for realizing a robot’s strategy and its reactions to events must 
all be considered. However, students’ robot programs depended mostly on procedure and had 
difficulty in implementing reactivity [10][11]. Procedure is easily described in the procedural 
languages and thus is a different paradigm from reactive languages that is described in 
declarative style [12]. Therefore, it is hard for novices to describe reactivity in a procedural 
language, and describing the procedure in a reactive language is also difficult [13]. There have 
been plenty of studies done on consistency of them, but proper solutions have not been 
presented [13]. Only a few studies have been conducted on educational robot activities for 
novice programmers. 

2.2 Approaches of Consistency with Procedural Features and Reactivity 

Biggs and MacDonald (2006) suggested five approaches to programming robot reactivity 
which were event loops, reactive languages and behavior architecture, multi-threading, 
reactive functional languages, and hybrid architecture [9]. Among these approaches, event 
loops, reactive languages and behavior architecture are the most applicable to introductory 
activities. Details in these approaches and applicabilities are described in the following. 

2.2.1 Event loop 

An ‘event loop’ is used to realize reactivity in procedural programming [13]. Procedural 
programming is commonly used [21], including educational robot programming languages 
such as RoboLab [22] and NXT-G [23]. Procedural programming consists of sequence of 
commands for accomplishing a specific aim. If novices can read and write commands, they 
can construct and implement a program [24].   

An event loop consists of conditional statements using sensors or timers to detect events 
and execute a response. Following is an example of an event loop in language C that triggers a 
beep when the input value of sensor ‘A’ goes down: 

 

while (TRUE) { 

    if (sensorA () < 100) { beep (); } 

} 
 

It is easy to denote an event loop because of its simple structure as shown above, but it is 
essential to consider the consistency of events that may occur. For example, the following 
contradictions typically occur:  

First, novice programmers frequently forget to use the loop that is used to keep watching 
events [25]. They tend to concentrate more on the entire flow despite the fact that the events 
that may occur should be considered. 

Second, reading the entire flow may fail if event loops are concentrated. If too many events 
are considered, the program structure will become overly complicated. In order to not lose the 
flow of a program with a complicated structure, the program is divided into modules, or 
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comments are written. However, dividing or commenting is very difficult for novice 
programmers because the criteria for division or comments are not clear [26]. Another 
weakness is the difficult maintenance/repair and expansion [13].  

If following computer processing is difficult, a good way to proceed is to materialize the 
programming language in the way people think. Cricket Logo is such an example. Cricket 
Logo uses a control structure for a ‘when’ sentence that is executed whenever specified 
requirements are met [27]. Below is an example showing the “execution of the command in [ ] 
when the value of sensor ‘A’ is lower than 100.” 

 

when (sensorA< 100) [beep] 
 

The control structure beginning with ‘when’ is an implicit event loop that detects an event.  

LogoBlocks [28] and RCX Code [29] are easy for young students to deal with because they 
use graphical expression. However, those are not suitable to change the reactive rules in 
response to progression of the work. For this reason, FlogoII [30] controlled reactivity by 
making the distinction between ‘steps’ that are executed sequentially and ‘processes’ that are 
an implicit event loop. However, a sufficient understanding of the two models precedes the use 
of ‘steps’ and ‘processes’ in programming. 

2.2.2 Reactive Languages And Behavior Architecture 

Programming that considers reactivity makes diverse interactions possible, so the range of its 
application is expanding. Event-driven programming, which has been generalized with the 
development of desktop applications, is a type of reactive programming. Because reactive 
programming language automates event loop processing, it must focus on the rules.  

More complicated rules are required for reactive robot programming than for desktop 
applications [9]. In robot programming, a rule-based language is provided suitable for the 
target robot, e.g. LegoSheet [31], Altaira [12] or RobotWorks [32]. The rules are expressed in 
a table, but there is also a data flow language described in the format of sensor input and motor 
output like that of the diagrammatical representation of an electric circuit. A rule-based 
language has the convenience of automation but also difficulty understanding the principles 
for program operation. The rules should be mixed with other content for a sequential process. 
When contractions occur as rules increase or when priority should be determined, rule 
management must be specified and high-level logical thinking is required [13].  

Etoys, which is able to simulate multiple objects, can express reactivity well [1]. Etoys can 
be used in the desktop programming environment but is also useful for teaching robot control 
programming in schools as with Squeakbot [33] or Physical Etoys [34]. Script that is one of 
the program units of Etoys plays the role of ‘event loop’ that realizes reactivity through 
interaction with the system. That is, reactivity is realized by judging events within the script 
and by describing the contents that can be responded to. Etoys is easy to understand the 
contents of the script because it is a procedural program. However because the script of Etoys 
has two roles of being executed singly and of event loop being called repeatedly, it is difficult 
to use them properly [35]. 

2.3 Requirements for Novice-oriented Procedural and Reactive Features 

As seen above, novice student programmers need to acquire “procedural programming” and 
“reactivity” together even for educational activities associated with robotics. This study 
specified the following requirements for students writing programs based on previous studies: 
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First, procedural programming whose principles are easy to understand is necessary. A 
procedural language that reveals the procedures for computer processing is more suitable for a 
learner so that she/he may better understand computer operational principles to write programs. 
For the aspect of reactivity, a complicated structure should be eliminated by simplifying the 
program with event loops.  

Second, an appropriate standard is necessary for breaking up the program into units. 
Repetitive behaviors are structured by the called procedure in robot programming so that all 
behaviors within the program must define the procedure. Defining the procedure and setting 
names for calling them can clarify the meaning of the procedure and also improve the 
functionality of the program. The program should be broken up into a series of sets to define 
each procedure, and the programmer must set the definite standard for breaking up the 
program into sets. The division of a program into partitions results in testing each partition, 
and in teaching robotics, program partitioning and testing allows students to share ideas and 
improve their teamwork skills [14][15].  

Third, it is necessary to visualize changes in the reactive rule. It is sometimes required to 
express reactivity during a ‘procedure’ that is called repeatedly. This situation refers to the 
‘state’ in the behavior architecture so that the ‘repetition of a procedure’ can be explained as a 
concept of the ‘state.’ Reactivity can be divided into two rules. First, there is a ‘temporary 
reaction’ that goes back to the original behavior as the specific situation ends. A temporary 
reaction means the change in behavior within the repetition of a procedure because it returns to 
the original behavior. Second, there is a ‘permanent reaction’ that does not return to the 
previous situation but instead moves to the next behavior. A permanent reaction does not go 
back to the previous state, so the reaction itself is a change and it also changes the procedure of 
being continuously called by using the control command. This refers to state transition. The 
change in reactivity needs to be visualized based on the finite automation model that divides 
the system into finite states. 

Fourth, a ‘state’ mechanism is necessary. A ‘state’ mechanism looks similar to a repetition 
structure in that it is continuously implemented. Accordingly, students might confuse the state 
concept with the repetition structure concept. For this reason, a ‘state’ mechanism is adopted, 
and the event loop is used for expressing the parts that overlap between the concepts. A state 
procedure is created and used for handling iterations instead of using a repeat command. A 
program can be broken up into a series of behaviors by using state procedures as mentioned 
before.  

3. Development of State-Based Squeak to Support Robotics 
Programming 

While writing robotics programs, students experience quite a bit of difficulty with 
conventional procedural programming because of its weakness in handling or controlling 
reactivity that is a basic functional requirement for robotics control [9][12]. 

For reactive control, rule-based programming has an advantage over procedural 
programming [12]. Rule-based programming is used extensively in industries to handle 
automation and electromechanical processes, such as automatic doors, elevators and 
amusement park rides where reactivity is a fatal issue. A rule-based program is described as a 
set of simultaneous rules consisting of the relationships between the inputs of sensors and 
outputs of actuators. For example, the Ladder Diagram (LD), which is a typical rule-based 
programming language, is based on the electrical circuit model. The program’s similarity to 
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diagrammatical representation of an electrical circuit does not require of programmers any 
abstract concept of procedural programming languages [36]. This rule-based principle is 
suitable for dealing with the reactivity encountered in the real world, and the static 
characteristics of the rules are suitable to online execution visualization of control equipment. 
So, whereas rule-based programming has the advantage of handling reactivity, its ability to 
handle complex sequences tends to be complicated [36]. 

Controls for robotics require both reactivity and sequential performance in their 
programming. Therefore we adopted the principle of state-based programming that integrates 
procedural and rule-based programming paradigms. We materialized this idea with a new 
programming language called State-Based Squeak. 

3.1 The Principle of State-Based Programming 

The concept of the thinking behavior of a program with states can be seen in a finite state 
diagram (FSD) and state-based control [37]. The LD is also extended for its sequential ability 
with a Sequential Function Chart using the state concept [38]. 

The principle of state-based programming in this study is to define an event loop as a 
fundamental unit of a program and form it into a named procedure like a function in 
programming language C. The event loop is the fundamental mechanism of reactivity for 
controlling robots and can be seen in both procedural and rule-based programs. A state-based 
program consists of event loops. We consider each event loop as one of the states of a 
computer system because it is fundamentally in a state of waiting for some event to occur and 
the same reactivity is performed.  

We developed the programming language, State-based Squeak, a derivative of Squeak [39], 
to implement the concept of state-based programming. Figure 1 shows a sample program, 
which is for an electric fan that is controlled in alternate action by clapping sound: 

 

stateStandBy 
 motor1 off. 

 (self detectClap) ifTrue: [ self transitTo: #stateWorking ]. 

 

stateWorking 
 motor1 on. 

 (self detectClap) ifTrue: [ self transitTo: #stateStandBy ]. 

 (self frontSensor > 300) ifTrue: [ self beep ]. 
 

Fig. 1. An example program of State-Based Squeak 
 

Because the fan can start or stop by the same clapping sounds it is considered that the fan 
requires two different states: stateStandBy and stateWorking. By defining reactivity in each 
procedure, the application framework forms an event loop by continuous calling the user 
defined procedure and performs the specified reactivity of the current state. At first, assume 
that stateStandBy is active. When transitTo: method is called in the certain condition, the 
current state is changed to specified state (stateWorking). This action is a state transition that 
performs sequential control. Now reactivity is changed and motor1 getting rotated and if 
someone got closed to the fan, the buzzer warned one’s approach. 

3.2 Comparing Three Types of Programs 

In order to better characterize a state-based program, we compared rule-based, procedural, and 
state-based programming (Fig. 2, Fig. 3, Fig. 4, Fig. 5). In this chart, each program is 
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displayed with a typical diagram to show its structure. Accordingly, the pairs of flowchart and 
Interactive C [40] for procedural programming, LD and Structured Text (ST) [38] for 
rule-based programming, and FSD and our State-Based Squeak for state-based programming 
were adopted. The following were used to compare the programs:  

(1) Reactive control: a mobile robot running parallel to a side wall (Fig. 2). 

(2) Sequential control: switch ‘s1’ starts a beep and switch ‘s2’ stops it (Fig. 3). 

(3) Timed sequential control: traffic lights change alternately between green (GO) and 
red (STOP) every 5 seconds (Fig. 4). 

(4) Control of robotics competition: a mobile robot pushes balls from one side of a 
playing field to the other on a surface on which color is constantly changing (Fig. 5). 

The first three represent basic components of control and the fourth is a practical 
application. Robotics competitions (4) originated with the Robo-Pong Contest that was first 
held at the annual MIT Robot Design Competition in 1991 [40]. The algorithms adopted in the 
programs shown are simplified from the original due to space constraints. 
 

Procedural programming Rule-based programming State-based programming 

[Flowchart] 

 

[Ladder Diagram] 

 

[Finite state diagram] 

 
[Interactive C] 
void main() { 
 while(1) { 
  if(analog(DISTANCE)<NEAR) 
{ 
   fd(RIGHT); off(LEFT); } 
  else { 
   fd(LEFT); off(RIGHT); } 
 } 
} 

[Structured Text] 
Q_FD_R := I_NEARWALL; 
Q_FD_L := NOT I_NEARWALL; 
 
(* The prefixes Q_ and I_ are 

assigned to outputs of actuator and 

inputs of sensor respectively for 

readability. *) 

[State-based Squeak] 
state1 
 (distance value<=NEAR) 
  ifTrue:[ 
  leftMotor fd. rightMotor off] 
 ifFalse:[ 
  leftMotor off. rightMotor fd] 

Fig. 2. Reactive control programs of three programming paradigms 

 
Procedural Programming Rule-Based Programming State-Based Programming 

[Flowchart]  [Ladder Diagram] 

 

[Finite state diagram] 

 

[Interactive C] 
void main() { 
 while(1) { 
  while(digital(S1)!=ON); 
  while(digital(S2)!=ON) { 
   beep(); } 
 } 
} 

[Structured Text] 
IF I_S2 THEN 
 Q_BUZZER:=FALSE; 
ELSEIF I_S1 THEN 
 Q_BUZZER:=TRUE; 
END_IF; 

[State-based Squeak] 
stateOFF 
 (s1 on) ifTrue:[ 
  self transitTo:#stateON]. 
stateON 
 (s2 on) ifTrue:[ 
  self transitTo:#stateOFF]. 
 buzzer beep. 

Fig. 3. Sequential control programs of three programming paradigms 
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Procedural Programming Rule-Based Programming State-Based Programming 

[Flowchart] 

 

[Ladder Diagram] 

 

[Finite state diagram] 

 

[Interactive C] 
void main() { 
 while(1) { 
  on(GREEN); off(RED); 
  sleep(5.0); 
  off(GREEN); on(RED); 
  sleep(5.0); 
 } 
} 

[Structured Text] 
TON_G( 
 IN:=NOT TON_R.Q, PT:=TIME#5S); 
TON_R( 
 IN:=TON_G.Q, PT:=TIME#5S); 
(*These define timer functions with 
parameters of a start trigger of IN and 
an ignition time PT) 
 
Q_GREEN:= NOT TON_G.Q; 
Q_RED:=TON_G.Q; 

[State-based Squeak] 
stateGreen 
 ledGreen setON. 
 (elapsed >=5) ifTrue:[ 
  ledGreen setOFF. 
  self transitTo:#stateRED] 
stateRed 
 ledRed out: 100. 
 (elapsed >=5) ifTrue:[ 
  ledRed setOFF. 
  self transitTo:#stateGREEN] 

Fig. 4. Timed sequential control programs of three programming paradigms 

Procedural Programming Rule-Based Programming State-Based Programming 

[Flowchart] 

 
 

 

[Ladder Diagram] 

 

[Finite state diagram] 

 
 
 

 

[Interactive C] 
void main() { 
 while(1) { 
 
  while(!digital(EYE_L)) { 
   if(digital(BUMP_L)  
     && digital(BUMP_R)) { 
    bk(LEFT_MOTOR); 
fd(RIGHT_MOTOR); 
    sleep(0.5); 
   } else { 
    fd(LEFT_MOTOR); 
fd(RIGHT_MOTOR); 
   } 
  } 
 
  while(!(digital(BUMP_L) 
    &&digital(BUMP_R))) { 
  
 fd(LEFT_MOTOR);fd(RIGHT_MOTOR)
; 
  } 
 
  releaseBalls(); 
 } 
} 
 
void releaseBalls() { 
  fd(LEFT_MOTOR); 
bk(RIGHT_MOTOR); 
  sleep(1.5); 
} 

[Structured Text] 
 (* Timer definition part *) 

TON90(IN:=TURNL, PT:=TIME#0.5S); 
TON270(IN:=RELEASE, 
PT:=TIME#1.5S); 

(* State variable part *) 
IF NOT I_EYEL THEN 
 MYSIDE:=FALSE; 
ELSEIF I_START OR (PLATEAU AND TON270.Q) 
THEN 
 MYSIDE:=TRUE; 
ENDIF; 
IF TON90.Q THEN 
 TURNL:=FALSE; 
ELSEIF MYSIDE AND ((I_BUMPL AND 
I_BUMPR) OR I_EYEL) THEN  
 TURNL:=TRUE; 
ENDIF; 
IF TON270.Q THEN 
 PLATEAU=FALSE; 
ELSEIF MYSIDE AND I_EYEL THEN 
 PLATEAU=TRUE; 
ENDIF; 
IF TON270.Q THEN 
 RELEASE:=FALSE; 
ELSEIF PLATEAU AND I_BUMPL AND I_BUMPR 
THEN 
 RELEASE:=TRUE; 
ENDIF; 

(* Output part *) 
Q_FD_R:=(MYSIDE OR PLATEAU) AND NOT RELEASE; 
Q_BK_R:= RELEASE; 
Q_FD_L:=(MYSIDE OR PLATEAU) AND NOT TURNL; 
Q_BK_L:= TURNL; 

[State-Based Squeak] 
stateMySide 
 (leftEye on) ifTrue:[ 
  self transitTo: #statePlateau]. 
 (bumpLeft on and: bumpRight on) 
 ifTrue:[ 
  self transitTo: #stateTurnLeft]. 
 leftMotor fd. rightMotor fd. 
 

statePlateau 
 (bumpLeft on and: bumpRight on) 
 ifTrue:[ 
  self transitTo: #stateReleaseBalls]. 
 leftMotor fd. rightMotor fd. 
 

stateTurnLeft 
 leftMotor bk. right_motor fd. 
 (elapsed>=0.5) ifTrue: [ 
  self transitTo:#stateMySide]. 
 

stateReleaseBalls 
 leftMotor fd. rightMotor bk. 
 (elapsed>=1.5) ifTrue: [ 
  self transitTo:#stateMySide]. 
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Fig. 5. Practical robotics programs of three programming paradigms 

We analyzed the advantages and disadvantages for each programming paradigm shown in 
Table 1. The following factors were selected considering the key issues confronted by 
novices: (1) intuitiveness: A factor for the creating and reading. Its parameters are requiring 
less difficulty, less base knowledge; (2) traceability: A factor for problem solving (debugging). 
Its parameters are understandability of the exhaustive reactivity for each situation and the flow 
of processes; and (3) extendibility: A factor for improving. Its parameters are eases of 
handling complication and extension of the functions. 

Table 1. Advantages and disadvantages of three programming paradigms 

Perspective Procedural programming Rule-based programming State-based programming 

Intuitiveness 

Advantages: Simple timed 
sequential control is de- 
scribed in a 
straightforward manner. 

Disadvantages: Code struc- 
tures tend to be nested and 
complex. The structured 
programming restriction 
causes inconvenience. 
Any expressions that 
indicate the meaning of 
each part are not 
guaranteed. 

Advantages: Simple reactive 
control is intuitive. The 
name of each state variable 
indicates the meaning of 
its code. 

Disadvantages: Sequential 
controls are complex with 
many steps and 
constructed differently 
according to the sensor 
inputs or elapsed time. 

Advantages: Generally 
accustomed procedural 
expression is available. A 
states’ name indicates the 
meaning of the each code 
and progress of execution. 

    Sequential controls are 
constructed in the same 
form, irrespective of using 
sensor inputs or elapsed 
time.  

Traceability 

Disadvantages: The 
unstable active part in the 
code makes it difficult to 
trace unexpected 
executions. 

Advantages: Static rules and 
wide coverage are good 
for output verification and 
runtime tracing. 

Advantages: Action and 
reactivity displayed in 
units of states ease 
execution traceability. 

Extendibility 

Disadvantages: 
Modularization is based on 
vague criteria and not 
promoted. Nested 
structures make it difficult 
to reconstruct the program. 

Disadvantages: Appending 
functions or any change 
require extensive investi- 
gation because the rules 
have complex 
relationships. 

Advantages: Program code 
is guaranteed to be divided 
into small units by states, 
which correspond to the 
FSD design. 

The advantages of the proposed state-based language are as follows: state-based language 
ejects iteration for event loops from a program and allows a simpler structure consisting of less 
nesting and more concise structures compared to procedural language. State-based language is 
concise in terms of procedural notation and division in states compared to rule-based 
languages. The motion and reactivity of robots are displayed clearly and definitely using the 
unit of states. The advantages of State-Based Squeak for robot programming at the novice 
level compare favorably with conventional programming concepts. Consequently, it was 
determined that the state-based program’s closeness to design using a finite state diagram 
resulted in easy construction, debugging and extension of the program. 

4. Experiment Study 

This study examined the effect that a state-based programming language had on the ability of 
novice programmers’ to describe a robot’s procedural and reactive behavior. The experiment 
was conducted with two groups that had equal programming environments but different 
approaches. The experimental group was given the state-based programming environment 
while the control group was given a conventional procedural programming environment. Both 
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the experimental and control groups received 7 lessons which were taught by the same teacher. 
The findings of the experiment are described below. 

4.1 Participants 

First, the participating students were in the 9th grade and had already acquired basic 
“programming skills and tips on programming” before they participated in the study. That is, 
they learned sequencing and repetition in procedural programming through an educational 
programming language. The students were divided into two groups, an experimental group (7 
boys, 7 girls) and a control group (6 boys, 8 girls). They were homogenously grouped based on 
their combined academic achievement scores in the previous grade (Wilcoxon rank test, 
p-value>0.1). Second, the teacher who had been teaching technology for 26 years was in 
charge of the experiment. In addition, he had 10 years experience of teaching programming 
and 2 years experience of teaching robot programming. He provided a minimum of 
explanation on the programming language for the students to learn and write state-based 
programs on their own. The lesson plan was student-centered, meaning the teacher was least 
involved in the class. His responsibility was mainly to lead the students to go through each of 
the stages of the lesson plan, check if the students were doing what they had to do, and respond 
to problems as they occurred. 

4.2 Materials 

The materials were specially prepared and designed for the experiment.First, the topic of robot 
activity was ‘Computer Programs and Measurement/Control Systems’ listed in the 
Technology and Home Economics course curriculum of the middle school. Accordingly, the 
learning objective corresponded to the course objective, “simple measurement/control 
systems using programs” [5]. Second, students used desktop PCs with Microsoft Windows XP 
for robot programming, and a robot manufactured by Studio MYU (Fig. 6).  

 

Fig. 6. “MYU Robot” by Studio MYU 

In this examination, we used a visual programming environment of Squeak, namely Rtoys, to 
program MYU Robots. There are a total of eight move commands available for the MYU 
Robot, but only four were used in the Rtoys (‘Forward,’ ‘Reverse,’ ‘Right Turn’ and ‘Left 
Turn’). The MYU Robot could make a curve with the combination of these primitive 
commands. Third, teaching materials were specially developed to teach the contents of the 
State-Based Squeak and distributed as handouts in every class. Each class lesson was 
composed of three parts. In the first part, an instruction was provided about the outline of the 
problem to be solved by students with what they learned in the class. In the second part, 
students did exercises to understand concretely what they had learned. In the third part, 
assignments were given to check if the students understood what they learned. Students were 
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asked to solve the assigned tasks on their own. All subjects challenged the students to 
complete the tasks assigned to them on their own. The contents of the teaching materials and 
the algorithm used for solving the tasks were the same for the two groups. However, the 
control group used repeat structures and escaping repetition command “exit loop” according to 
the procedural programming system, while the experimental group used state scripts and the 
state transition command “transit to” according to the State-Based Squeak. 

 

Fig. 7. Two types of teaching materials (translated) 

 Fig. 7 shows part of the explanation on “Change the two repeated behaviors” used in the 7th 
class.  

4.3 Procedure 

Table 2. Contents of experiment class 

Class# Step Concept Contents # Exercise assignments 

1 Intro. Sequencing 
Basic manipulation of 

tile-based language 
1 Self-programmed animation 

2 

Learning 

Repetitive 

actions 

Drawing figures 

– repetitive behaviors 
2 

Draw polygonal shapes such as triangles and 

squares. 

3-4 
Temporary 

reaction 

Collision avoidance (turn) 

– use of sensors 

3 

4 
Turn left/right to avoid obstacles. 

5 

Permanent 

reaction 

Collision (reverse) 

– self-solution of change in 

repetition 

5 Regress at the time of collision. 

6-7 
Command for sensor activity 

– Practice changing repetation 

6 

7 

Move at the first command and stop at the 

second command. 

Assign the commands given in the 6th class to 

reverse right and left using tactile sensors. 

8 

Evaluation 

Writing of a 

program 
Self-programmed motion 8 

Make self-programmed motions (Write a 

program that implements many behaviors) 

9 Testing Paper test  
Answer 10 questions of varying degree of 

difficulty 

10 Review  
Recall of the programming 

process 
 

Recall difficulties encountered and interesting 

things 

 

Experimental group Control group 

The program design 

is explaned with 

same state machine 

To escape currently repeating 
“repeat” tile, use “exit loop” tile in 
the viewer “tests” category. Put it 
into the “Yes” part of the test tile. 
With this procedure, repetition of 
the first repeat tile is finished and 
program execution will proceed to 
the next step of curving to the left. 

To transit to another state, use 
“transit to” tile in the viewer “tests” 
category. By clicking the right part 
of “transit to” tile, the selections of 
“state1” and “state2” will be 
appeared. According to the 
program design, the MYUCAR will 
transit to the state of “Curving to the 
left”, select the “state2” and put it 
into the “Yes” part of the test tile. 
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A total of 10 classes were offered, one class per week. For fair comparison, the order of 
receiving the class changed on a weekly-basis, that is, the class was given first to the control 
group in one week and then to the experimental group in the next. Each class lasted 50 minutes 
in the following order: 1) the first 20 minutes were used for the teacher’s instruction and 
students’ exercises; 2) the next 25 minutes for students to complete assignments for assessing 
their understanding of what they had learned; and 3) the final 5 minutes for writing 
self-evaluation results on a class card. Table 2 shows the class procedure and contents covered 
throughout the 10 classes. 

4.4 Measurement and Instruments 

This study conducted an evaluation consisting of three steps to examine the effect of the 
state-based programming system developed in this study. 

First, the learning achievement was evaluated for each class. In every class the content to 
be taught was introduced to the students and then their understanding evaluated. The 
evaluation focused on the degree of students’ understanding on the lecture which was about 
programming concept.  

Second, the self-programmed system was evaluated. The objective of the assignment was 
to ‘Make a program that realizes as many behaviors as possible using tactile sensors.’ This 
assignment was aim to encourage students to make their programming system complicated. A 
list of commands was given to students to help them realize as many behaviors as possible, and 
then students were asked to mark a check for the commands they used. The complexity of the 
program was evaluated using the value of M, the Cyclomatic Complexity (CC) of McCabe 
(1976) [41]. The value of M was computed by drawing a control flow chart and counting the 
number of nodes (N), the number of edges (E) and the number of connected components (P). It 
is denoted by the following formula: 

 

M = E − N + 2P                                                      (1) 
 

 

Fig. 8. Two types of programs for same problem assignments (translated) 

 

1. Start turning to the right when No. 2 sensor detects and 
has contact, or start turning to the left when No. 3 
sensor detects and has contact. (1/3 point)  

2. Make the right turn when No. 2 and 3 sensors detect 
and No. 2 sensor has contact, or make the left turn 
when No. 2 and 3 sensors detect and No. 3 sensor has 
contact. Do not make the turn when sensors do not 
have contact. (2/3 point) 

 
3. Start turning to the right and continue turning in the 
same direction when No. 2 and 3 sensors detect and 
No. 2 sensor has contact, start turning to the left and 
continue turning in the same direction when No. 2 and 
3 sensors detect and No. 3 sensor has contact. (1 
point) 

4. Don’t know. (0 point) 

Experimental 

class 

program 

Control 

class 

program 

Choices of explanations 

Nested loops are 

expressed in 

independent state 

scripts in 

state-based Rtoys  
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Third, the program readability test had 10 question items with varying degrees of difficulty. 
An example question is shown in Fig. 8. The program included 3 repeats/states. In the control 
group’s program, the second and third repeats are nested in the first repeat. In the experimental 
group’s program, all in the script are parallel. Students were asked to give correct answers for 
the questions. Table 3 shows the formulas that are the rationale for grading the questions. 
Students’ answers were graded based on the problem solving process as shown in Table 3. 

Table 3. Structures of programs and choices 

# 
Presented program 
(= 1 point answer) 

2/3 point answer 1/3 point answer 

Q1 (A−B−)+ (AB) + A−B−$ 

Q2 (ε+ (sA)+) + (ε+ (sAε)+)+ ε+ sA+ 

Q3 (A+{sB | tC})+ A+{sB | tC}+ Α+sB+tC+ 

Q4 (A+sB−)+  (A+sB)+ A+sB−$ 

Q5* ε+sA+ (ε+sA) + ε+sA+t$ 

Q6 A+sB+ (A+sB+t)+ (AB) +sB+ 

Q7* (ε+{ sA+ | tB+})+ (ε+{sA+ | tB+}t)+ ε+sA+tB+ 

Q8 ε+sA+t$ (ε+sA+t)+ A+{ s | t }$ 

Q9 A+sB+t$ (A+sB+t) + (AB)+sB+t$ 

Q10 (ε+{ (sAB)+ | (tAC)+ })+ 

(For control group) 

(ε+(sAB)+ε+(tAC)+)+ 
(For control group) 

ε+{s | t}A(sB)+(tC)+$ 
(For experimental group) 

ε+{s | t}A(sB)+(tC)+$ 
(For experimental group) 

 (ε+(sAB)+ε+(tAC)+)+ 
* marked questions include nested loops for the control group 

 
Signs are implemented in order from the left. The meaning of each sign:  

A, B, C: Robot behavior 

ε: No motion (stopped) 
$: End of program  

−: The previous behavior continues over 0.5 second 
 (the period has a special meaning such as 90-degree turn). 

+: The previous behavior is repeated.  
s,t: Event occurrence (sensor contact) 
 ( ) : Bundle of behaviors (used for repeating a series of behaviors with a “+”.) 
{ | } : Selective behavior of plural expressions divided with a vertical line. 

 

Q10 was constructed to make the control and experimental groups answer in different ways. 
The experimental group was asked to solve the problem by changing the state, while the 
control group was asked to solve the problem through the nest. For instance, Q5 and Q6 are 
similar in structure, but Q5 requires programming by nesting the repeat, while Q6 asks for 
programming by avoiding a repeat. On the other hand, the control group used a method that 
changed all the states of two questions, showing no difference in the way of solving the 
problem between two questions. The problem solving method for Q5 and Q6 are applied 
equally to Q8 and Q9. 

5. Results 

To measure the effect of state-based programming, this study first compared the completion 
ratio of exercises between the two groups based on the program concepts and then analyzed 
the free programming assignments that allowed students to practice as many robot behaviors 
as they could, and then, finally, a program readability test was conducted to evaluate the 
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overall understanding the students had of the program. The analyses results are provided in the 
following sections. 

5.1 Completion Ratio of Exercises 

Table 4 shows the completion ratio for each assignment based on the students’ understanding 
of the program concept. A two-tailed Fisher’s exact test was used to statistically analyze the 
difference between the control and experimental groups.  

Table 4. Completed examinee ratios for each assignment 

Concept Group Completed examinee ratio P value 

Repetition 
Control 0.63 

.058 
Experimental 0.75 

Temporary 
reaction 

Control 0.52 
.047* 

Experimental 0.69 

Permanent 
reaction 

Control 0.17 
.007** 

Experimental 0.44 
Significant level: * p<.05, ** p<.01 

 

According to the results, the two groups showed a difference in repetition of 12%, which is not 
statistically significant. However, for the completion ratio for temporary reaction (p<0.58) 
there was a statistically significant difference of 17% between the groups, 69% for the 
experimental group compared to 52% for the control group. There was also a statistically 
significant difference in permanent reaction (p< .01), 17% for the control group and 44% for 
the experimental group. The group that used the state-based programming system showed a 
higher completion ratio. 

5.2 Artifact Analysis of Open Assignment Programming 

The free programming assignment was analyzed based on the Cyclomatic Complexity M 
value to assess the complexity of the programs created by the students. Table 5 shows the 
results of comparing the Cyclomatic Complexity M between the two groups. 

Table 5. Difference in Cyclomatic Complexities M 

Group Median M Q Wilcoxon U 

Control 4 2.5-4.5 
45.5* 

Experimental 6 5-6 
Medians and interquartile ranges (Q) are based on intervals containing the 25, 50 and 75 percentiles, respectively 

Significant level: * p<.05 

 

The medians were found at 4 for the control group and 6 for the experimental group, showing 
a statistically significant difference (Wilcoxon rank-sum test, p-value <0.05). Fig. 9 shows the 
two groups’ scripts that are the most complicated programs. The control group’s program had 
7 layers of nesting, and tiles appeared that made it difficult for the students to view the SXGA 
computer screen they used. Errors such as ‘unreachable code’ (“exitRepeat” command marked 
as *1 in Fig. 9) and the ‘if sentence without if’ (marked as *2 in Fig. 9) appeared in the 
programs. On the other hand, it was easy for students of the experimental group to view the 
computer screen because the program allows for arranging the state script anywhere they 
wanted, and errors did not appear in the program.  
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Control group (M=10) Experimental group (M=9) 
MYUCARC >> script1 
 [ (self getSwitch: 2) ifTrue: [ 
   self turnRight: 1. 
   (self getSwitch: 3) ifTrue: [ 
       [ self forward: 1. 
     (self getSwitch: 2) ifTrue: [ 
      self turnRight: 10. 
       [ self forward: 1. 
       (self getSwitch: 3)  ifTrue: [ 
               [ self wait: 1. 
         (self getSwitch: 2)  ifTrue: [ 
          self turnLeft: 10. 
          [ self forward: 1.  
           (self getSwitch: 3) ifTrue:[ 
                      [ self wait: 1 ] repeat ] 
          ] repeat. 
          self exitRepeat]. "*1" 
        ] repeat. 
        self exitRepeat]. "*1" 
      ] repeat. 
      self exitRepeat]. "*1" 
     true ifTrue: []."*2" 
    ] repeat. 
    self exitRepeat]. "*1" 
   (self getSwitch: 3) ifTrue: [ 
      [ self turnLeft: 1. 
     (self getSwitch: 2) ifTrue: [ 
     self wait: 15] 
   ] repeat. 
   self exitRepeat]. "*1" 
 ] repeat 

MYUCAR >> state1 
 self forward: 2. 
 self back: 2. 
  (self getSwitch: 2) ifTrue: [ 
  self transitTo: #state2] 
MYUCAR >> state2 
 self turnRight: 1. 
  (self getSwitch: 3) ifTrue: [ 
  self transitTo: #state3] 
MYUCAR >> state3 
 self turnLeft: 1. 
  (self getSwitch: 2) ifTrue: [ 
  self transitTo: #state4] 
MYUCAR >> state4 
 self wait: 5. 
 self forward: 1. 
 self turnRight: 3. 
  (self getSwitch: 3) ifTrue: [ 
  self transitTo: #state5] 
MYUCAR >> state5 
 self forward: 2. 
 self turnRight: 1. 
  (self getSwitch: 2) ifTrue: [ 
  self transitTo: #state6] 
MYUCAR >> state6 
 self wait: 5. 
 self back: 1. 
 self turnLeft: 3. 
  (self getSwitch: 3) ifTrue: [ 
  self transitTo: #state7] 
MYUCAR >> state7 
 self wait: 6. 
 self turnRight: 10. 
  (self getSwitch: 2) ifTrue: [ 
  self transitTo: #state8] 
MYUCAR >> state8 
 self wait: 6. 
 self turnLeft: 1. 
  (self getSwitch: 3) ifTrue: [ 
  self transitTo: #emptyState] 

Fig. 9. Specially complicated programs written by students. 

5.3 Program Comprehensibility 

Table 6 shows the results of comparing the program reading ability between the two groups. A 
total of 10 questions were measured on a 10-point scale.  

Table 6. Mean scores for each question of reading test 

Concept Group M (SD) t-value 

Total 
Control 7.13 (2.03) 

2.710* 
Experimental 8.70 (0.78) 

Repetition 
Control 9.75 (0.91) 

0.001 
Experimental 9.75 (0.90) 

Temporary 
reaction 

Control 7.35 (1.39) 
1.420 

Experimental 8.01 (1.03) 

Permanent 
reaction 

Control 6.90 (2.09) 
2.934** 

Experimental 9.39 (0.75) 
Significant level: * p<.05, ** p<.01 

 

According to the results of analyzing program reading ability, the mean of the experimental 
group was 8.70, significantly higher than the mean of 7.13 for the control group. The two 
groups did not show a significant difference in reading ability for repetition and temporary 
reaction but showed a significant difference in permanent reaction, 9.39 for the experimental 
group and 6.90 for the controlled group.  Since the experimental group learned a state-based 
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programming system suitable for middle school students, it showed a higher understanding for 
overall aspects of programming than the control group that learned the general programming 
system. Educational programming language is used in teaching programming to middle school 
students because it is hard for students to understand general programming. However, the use 
of the tool developed in this study for teaching programming to students sparked students’ 
interest in programming and enhanced their programming performance. The development of 
the tool is significant in that it helps students be exposed to programming more easily at the 
beginning stage.  

Table 7 shows the results of the Wilcoxon rank sum test for repetition and temporary 
reaction.  

Table 7. Differences of average scores for each question group with reaction types 

Reaction type Group Median Q 
Wilcoxon 

U16-16 

All 
Control 7.8 7.2-8.3 

76.2* 
Experimental 9.1 8-9.4 

No and 
temporarily 

Control 3.0 2.7-3.3 
112.5 

Experimental 3.0 3-3.3 

Permanent 
Control 5.0 4.3-5.7 

75* 
Experimental 5.7 5.2-6 

Medians and interquartile ranges (Q) are based on intervals containing the 25, 50 and 75 percentiles, 
respectively 

Significant level: * p<.05 

 

According to the results, the two groups showed a significant difference only in permanent 
reaction on which this study focused (p <0.05, Fisher’s exact test). It was confirmed that the 
state-based programming was more effective in permanent reaction that increases the 
complexity of a program. Students could solve a tougher program more easily because they 
understood the program well. Those results support that the state-based programming can 
contributes to improving students’ problem solving abilities. 

6. Discussion and Conclusion 

This study attempted to seek a better way to use robot programming for educational activities 
because students have such a keen interest in the subject. It is easy to choose robot 
programming in education because it motivates students not only to learn programming but 
also doing so helps them develop their critical and creative thinking abilities. However, 
students who are beginners must from the start understand the concept of reactivity very well 
to write programs suitable for the real world. This study considered reactivity as an integral 
part of procedural programming, and developed State–Based Squeak to support robot 
programming. In addition, this paper examined the effect of state-based programming system 
through an experiment.  

According to the results, the use of the state-based programming system was found more 
effective when students learned or implemented difficult concepts. The effect was especially 
higher on complex contents which require the use of many behaviors to implement a program.. 
In addition, to achieve effectiveness, teachers explained as follows:  

 

“State-based programming helps students divide the robot movement into small units.”  
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This explanation confirms that teachers were also aware of the second advantage of the 
state-based programming system, “an appropriate standard is necessary for breaking up the 
program into units.” 

 

“It was hard to explain the concept of ‘states’ and it is necessary to arrange the relation of the 

states in a 2-dimensional diagram before students made their programs. It was also hard to 

evaluate the project carried out by students who were asked to make their programming 

system complicated.” 

 

To examine the effect of the state-based program, students were asked to write a program that 
would have the robot execute as many behaviors as possible. When teachers evaluated the 
projects completed by the students, they sometimes had difficulty evaluating the quality of a 
robot’s movement if the purpose of the robot movement was not clear. This difficulty was 
indicated by the teachers. Therefore, we suggest to ‘explain the concept of states more easily’ 
considering the ‘advantage of breaking up the program into small units’ and to ‘develop a 
suitable task for state learning’. 

This study examined the effect of state-based programming, but the number of the 
participants was small and the capabilities of Rtoys were limited. For an education based on 
state-based programming, it is required to keep the following in mind: 

First, state-based programming is a programming suitable for reactivity measurement and 
control. For straight-line programs, programmers using state-based programming must divide 
the system into more units than is needed for procedural programming. This higher complexity 
is a disadvantage of state-based programming.  

Second, state-based programming has the disadvantage of decreasing the readability of 
program code as the task to be done becomes more complicated. State-based programming has 
the advantages of eliminating the limitations of procedural programs and can control program 
flow more freely by state transition. However, as with Dijkstra’s “Go To Statement 
Considered Harmful”, arbitrary jumping makes programming more difficult in reading and 
tracing the execution steps in it. As the conditions to be considered become more, it is possible 
that the number of state gets too many to handle. It is just as so called “state explosion”.  

The relation of states can be explained in a 2-dimensional diagram to trace complicated 
state transitions easily. This study solved the complexity problem by explaining each state in a 
2-dimensional screen in the script through Rtoys, which is a visual programming environment.  

As the relation of state explosion, a hierarchical structure will be needed. In a practical state 
diagram, such as a Harel Chart or modern UML, states are classified into a hierarchical 
structure like concurrent states or substates [42]. It is technically possible to run concurrent 
states in State-Based Squeak, but we did not enable it on Rtoys in order to provide the only 
concepts that novice programmers can understand. However, it is necessary to examine more 
diverse effects of state-based programming by teaching classified states in a hierarchical 
structure to novice programmers and asking higher-level learners such as high school students 
to deal with concurrent states. 

The State-Based Squeak and its programming system were designed and developed, so 
students are expected to perform diverse logic activities during their problem solving process. 
The significance of this study lies in its ability to help students learn robot programming more 
easily and develop their scientific thinking by leading them to solve problems in the same way 
as computer scientists do. 
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