
Why is programming difficult?

Proposal for learning programming in “small steps” and a
prototype tool for detecting “gaps”

Yayoi Hofuku14, Shinya Cho2, Tomohiro Nishida3, and Susumu Kanemune4

1 Sagami Kouyoukan High School
2 Meisei University

3 Osaka Gakuin University
4 Osaka Electro-Communication University

Abstract. In this article, we propose a model for an understanding
process that learners can use while studying programming. We focus on
the “small step” method, in which students learn only a few concepts
for one program to avoid having trouble with learning programming.
We also analyze the difference in the description order between several
C programming textbooks on the basis of the model. We developed a
tool to detect “gaps” (a lot of concepts to be learned in a program) in
programming textbooks.

1 Introduction

For students in the digital age it is important to understand that electronic
equipment works with a computer and how it works. It is desirable for them
to write programs so that they understand how a computer works according
to the given instructions in a program. However, a lot of students drop out of
introductory programming courses.

Why do students have difficulties with programming, although it is a creative
activity and could be fun for them? In our class we often find that students have
lost their way when they study particular contents that have many things to
learn. That students are lost when they study a particular content with many
things to learn. Therefore, we suppose that students are lost when they study a
particular content with many things to learn (we say that such programs have
“gaps”), so we developed a tool that detects new learning elements between the
exercises in programming textbooks.

In this paper we will show the “small step” method which, by reducing the
amount of new concepts, helps the students understand programming and the
problems in existing textbooks.

We explain the tool and report on the results of applying the tool to C
programming textbooks.

2 “Small steps” in programming learning

There is lots of research on the difficulties for novices in learning to program[1,
2]. Novice programmers often face difficulties already in basic courses[3]. There
is a lot of novices think that programming is difficult and requires too much
knowledge and too many skills to be learned all at once and right from the
beginning[4, 5].

Skinner[6] developed teaching machines and programmed instruction that
presents material structured stepwise in a logical sequence. His work affects self-
study materials for CAI, e-learning systems, and so on.

We focus on the principle that Skinner stated:

“In acquiring complex behavior the student must pass through a
carefully designed sequence of steps, often of considerable length. Each
step must be so small that it can always be taken, yet in taking it the
student moves somewhat closer to fully competent behavior”. [6]

We call this principle “small steps”. This principle is efficient in studying math-
ematics and a foreign language. Our goal is to also apply this principle to pro-
gramming learning and help novice students to the learning of programming
smoothly.

Our hypothesis is that if there are a lot of new syntax elements in one pro-
gram, students may feel high gaps and find it difficult to understand further
programs.

3 Problems in programming textbooks having “gaps”

Teachers or authors of programming textbooks tend to add lots of new concepts
(we call them “gaps”) in each exercise because they know various concepts of
programming. As a result, they make big “gaps” between exercises, and learners
have difficulty solving them.

Fig. 1 shows an example of a big gap in a C-course exercise. First the teacher
gives a simple example that displays a string constant. Next he/she gives an
example that displays a variable number. She or he thinks it is an easy task
because it contains only one concept “displays a number that is calculated from
a variable”.

However, there are lots of new concepts in the second program.

– declaration of variable: int n

– data types: int

– substitute a constant for a variable: n = 10

– arithmetic operation: n+20

– formatting: %d

– multi argument of a function: printf("%d",n+20)

printf("Hello");
int n = 10;

printf("%d", n+20);

Fig. 1. Example of a big gap

It is not easy to detect new concepts even if we only show a two-line program.
We focus on these gaps that teachers cannot identify. In particular, we focus on
repetition (looping) structures with which lots of students have difficulty.

Repetition structures in C are much more complicated. Fig. 2 shows examples
of two kinds of repetition: “for” and “while” structures.

int i;

for (i = 0; i < 10; i++) {
printf("Hello");

}

int i = 0;

while (i < 10) {
printf("Hello");

i++;

}

Fig. 2. Example of repetition in C(for, while)

Both programs in Fig. 2 show that the instruction repeats “display a string
Hello” 10 times. To understand these programs, learners should know “vari-
ables”, “data type (int)”, “variables initialization”, “assignment”, “compare op-
erators”, “Boolean values” and “increment operator”. Many concepts are neces-
sary to understand these simple structures.

General-purpose programming languages like C have multiple expressions
to express repetition structures. For example “for”, “while” and “do-while”.
Therefore, teachers tend to give various examples and exercises to students, but
these are too much to master, so learners may be confused when, for example,
a “for” program contains “if”.

Moreover, a nested structure would bring confusion to the students.
Which should be the first structure when teaching repetition structures?

Some teachers teach “for” first because a number of repetitions can be indicated
clearly with the fixed numbers. However, as shown above, learners must know
many concepts in order to understand “for(i=0 ; i<10 ; i++)”. Therefore they
cannot understand it and rely on rote memorization. On the other hand, teachers
wonder why learners forget it so fast.

The “small steps” teaching approach would resolve this problem in the fol-
lowing ways.

– Changing order: For example, we should teach “conditions”, “increment
operator” and “if”, before we teach “while”. After students understand all
of them, we can teach “for”.

– Adding a new program: For example, if the teacher shows students the
program shown in Fig. 3, before he/she shows them the program on the right
side of Fig. 1, they only need to learn an arithmetic operation, so the gap is
lowered.

int n = 10;

printf("%d", n);

Fig. 3. Example of adding a new program

4 Analysis of C language textbooks

To verify the hypothesis described above we analyzed programs that appear in
C language textbooks.

4.1 Analyzing textbooks for introductory programming

As examples of textbooks for introductory programming we analyzed five textbooks[8–
12] focused on the learning order of concepts. Table 1 shows the order of each
textbook.

Table 1. Analysis of five textbooks

A B C D F

variables variables variables variables variables
... types ... assignments types

assignments assignments assignments types assignments
expressions arrays (arithmetic) (arithmetic) arrays

　 expressions expressions
... strings casts casts (arithmetic)
　 expressions

types expressions (comparison) ... (compound)
expressions expressions

if if if for if
switch for switch while while
do while for do do

while do while if for
for switch do switch switch

This result shows two problems with the order of learning control structures.

The first problem is “teaching everything”. Some textbooks show many con-
cepts that do not need to be learned by novice students to explain language
specifications. For example, textbook B explains arrays at the introductions of
the types and all operators of C language.

The second problem is “disorder”. Some textbooks teach in an order that
does not match with the structure of understanding. For example, textbooks B
,C and D introduce “while” statements after “for” statements. To understand
“for” statements, the understanding of “if” statements (“condition”) and “while”
statements (“repetition”) are needed, but students do not learn repetition at this
time.

Textbook A introduces conditional expressions of “if” statements in a weird
order; it starts with x % 5. This example contains two concepts: “behavior of
‘ if’statements” and “interpretation of integer values as Boolean values (yes or
no)”. Table 2 shows the alternative order of conditional expressions. It would be
easier if students start learning with a comparison expression. It is easy to grasp
an image of boolean values (comparison is answerable by yes or no). And only
then students should learn the fact that “all integer values have the meanings
yes or no (Boolean) in C language”.

Table 2. Order of comparison expression in textbook A and the alternative order

No. Textbook A Alternative order

3-1 if (x% 5) if (x1 == x2)

3-2 if (x% 2) if (x1 > x2)

3-3 if (x% 5) else if (x1 == x2) else

3-4 if (x% 2) else if (x != 0) else

3-5 if (x) else if ((x%2) !=0)

3-6 if (x1 == x2) else if (x%2) else

Taking these points into account when the teacher uses a textbook to teach
programming, they can help students understand smoothly by changing the
order of programs or adding supplemental programs that are not in the textbook.

The order of programs in a textbook reflects the philosophy of the author
and is the standard order when using the textbook. We are interested in whether
the standard order and the “ideal” order are the same. If students and teachers
learn in the ideal order, they must feel that it is “easy to learn” and “easy to
teach”.

5 Tools for detecting “gaps” in programming textbooks

As we described before, most textbooks have gaps. Students and teachers feel
that gaps are difficult. We propose to change the order of programs in textbooks
or provide other programs to fill these gaps. However, there are some problems.

– It takes a long time to find the gaps in textbooks.
– If a teacher tries to fill the gap, he/she is not sure whether the gap is really

lowered.

Our hypothesis is that if there are a lot of new syntax elements in one pro-
gram, students may feel high gaps and may find it difficult to understand further
programs.

To solve these problems, we developed a tool named “De-gapper”, which
detects new syntax elements of each program in programming textbooks.

5.1 Overview of the tool

De-gapper requires a set of program files as an input, arranged according to
occurrence in the textbook. For each program file, De-gapper checks and reports
if there are learing concepts appearing for the first time in the textbook. Fig. 4
shows an example of input program files and output report of De-gapper.

Fig. 4. An example of input and output of De-gapper

If there are too many new learning concepts for one program, the program
is expected to be too difficult to be understood by students.

This tool is useful for a teacher teaching programming with a textbook. De-
gapper tells him/her in advance which parts of the programs in the textbook
are difficult, and he/she can prepare supplemental explanations for the difficult
parts.

It is also useful for the author of the programming textbook. De-gapper lists
all learning concepts that appear in the textbook. The author can check whether
all learning concepts are explained in the textbook.

5.2 Implementation

De-gapper consists of a “parser” and a “checker”. The parser parses all program
files in the textbook and outputs syntax trees as XML files (called “XML tree

files”). Fig. 5 shows a sample input and output of the parser. The snipped parts
of Fig. 5 contain tags for the entire program and function definitions. Since this
paper will discuss programs that have just one function, we will omit these tags.

Fig. 5. Example of input and output of the parser

The checker scans all XML tree files in the order of occurrence in the text-
book. For each XML tree file, the checker detects the paths of tag hierarchy. For
example, the checker will detect the following paths in the XML tree file in Fig.
5:

list0101-1: stmts
list0101-2: stmts -> expr_stmts
list0101-3: stmts -> expr_stmts -> call
list0101-4: stmts -> expr_stmts -> call -> attr_args -> add
list0101-5: stmts -> expr_stmts -> call -> attr_args -> add -> num
list0101-6: stmts -> expr_stmts -> call -> attr_args -> add -> op
list0101-7: stmts -> expr_stmts -> call -> attr_args -> literal

De-gapper names these concepts “list0101-1” to “list0101-7”. Note that
they are ordered by path string, not by occurence in the program.

If there are paths that have not appeared yet in previously checked XML
tree files, the paths are detected as “new learning concepts” of the program
corresponding to the XML tree file.

Current implementation can parse C and Java program files. But it is easy
to make it workable for other languages if we add parsers for these languages.

5.3 Examples

Example 1 - Small Example: Suppose that there is a textbook whose first
program is list0101.c, shown in Fig. 5. De-gapper detects all paths of the
program as new learning concepts. These can be explained as:

– list0101-1: The first example of a list of statements.
– list0101-2: The first example of an expression statement.
– list0101-3: The first example of a function call in a statement.
– list0101-4: The first example of an additive expression in a function call.
– list0101-5: The first example of a number in an additive expression.
– list0101-6: The first example of a + operator in an additive expression.
– list0101-7: The first example of a literal in a function call.

If the next program in the textbook is the one shown in Fig. 6, De-gapper
detects 11 new learning concepts named list0102-1 to list0102-11. These can
be explained as:

– list0102-1 to list0103-3: The first example of a variable declaration.
– list0102-4: The first example of a variable in a function call.
– list0102-5: The first example of an assignment.
– list0102-6: The first example of a variable in the left member of an assign-

ment.
– list0102-7: The first example of an additive expression in the right member

of an assignment. (at vy=vx+10;)
– *list0102-8: The first example of a number in an additive expression (at

vy=vx+10;).
– *list0102-9: The first example of a + operator in an additive expression

(at vy=vx+10;).
– list0102-10: The first example of a variable in an additive expression (at

vy=vx+10;).
– list0102-11: The first example of an immediate number in the right mem-

ber of an assignment(at vx=57;).

In these concepts, list0102-8 and list0102-9, annotated with *, are not
completely “new” learning concepts for the following reasons:

– Students learn list0102-7, meaning that they can write additive expres-
sions on the left member of an assignment.

– Additive expressions are already learned in list0101-4.
– They also learned list0101-5 and list0101-6. They already know that

they can write + operators or numbers in additive expressions.
– Thus, they would imagine easily that they can write + operators or numbers

in an additive expression on the left member of an assignment.

We will call such new concepts “minor” new concepts, and the rest “major”
new concepts.

Example 2 - The K & R book: We will show another example. We applied
De-gapper to “The C programming language”[7], from 1.1 to 1.6. The result is
shown in Table 3.

De-gapper found that program No. 3 had extremely high gap with 26 major
new concepts. Many supplemental programs are needed. However, we do not

Fig. 6. Example of the program that contains variables first

discuss this program in this section (This gap is apparent even if we do not use
De-gapper). We will focus on the programs that follow No. 3. From No. 4 to No.
11, most programs have quite low gaps, with 1 to 3 new concepts. Number 5 has
a little bit of a high gap with 6 new concepts. Fig. 7 shows program No. 5 (also
No. 4 to check gaps).

This is the first example of a “for” statement. Number 5 has the following
major new concepts:

005-1: stmts -> for

005-2: stmts -> for -> attr_condition -> comp

005-3: stmts -> for -> attr_condition -> comp -> num

005-6: stmts -> for -> attr_initializer -> let

005-12: stmts -> for -> attr_loop -> expr_stmt -> call -> attr_args -> mul

005-23: stmts -> for -> attr_increment -> let

When students learn the “for” statement, the following concepts are manda-
tory:

– 005-1: the “for” statement itself
– 005-6: the initializer part of statement
– 005-2: the condition part of statement
– 005-23: the increment part of statement

We focus on the remaining parts: 005-3 and 005-12. These are interpreted as:

– 005-3: The first example of an immediate number in a comparison expres-
sion: fahr <= 300 .

Table 3. New concepts in the K & R book from 1.1 thru 1.6

No. Section # of new concepts The first example of:
(major/minor)

1 1.1 4/0 printf("Hello, world\n");

2 1.1 0/0 multiple printf

3 1.2 26/4 int variables and “while” statement

4 1.2 1/2 float variables

5 1.3 6/22 “for” statement

6 1.4 1/0 #define

7 1.5.1 2/0 c=getchar(); (receiving return value of function call)

8 1.5.1 3/4 c=getchar() in loop condition of “while” statement

9 1.5.2 3/1 increment prefix ++

10 1.5.2 3/1 “for” statement with an empty statement

11 1.5.3 3/5 “if” statement and character literal

12 1.5.4 10/24 else part and || operator

13 1.6 15/17 arrays and && operator

– 005-12: The first example of an arithmetic expression in an argument of a
function call: printf("%3d %6.1f\n", fahr, (5.0/9.0)*(fahr-32));

These concepts are not the essential parts of a “for” statement. Although the
authors may intend to write program No. 5 as a transformation of No. 4 (“while”
statement), it is not a pure transformation; No. 4 contains the variables lower,
upper, step and celsius to define ranges or keep a calculation result, while No.
5 does not contain them. The pure transformation would be like Fig. 8 named
“No. 4.5”. If there was this program between No. 4 and No. 5, the number of
the new concept would be 5:

004.5-1: stmts -> for

004.5-2: stmts -> for -> attr_condition -> comp

004.5-5: stmts -> for -> attr_increment -> let

004.5-10: stmts -> for -> attr_initializer -> let

004.5-13: stmts -> for -> attr_loop -> compound_statement

004.5-13 is a new concept that does not appear in No. 5, which contains no
compound statement in the “for” statement. Aside from 004.5-13, the remain-
ing four new concepts correspond to the mandatory concepts of “for” statements.

This example shows that the program in which De-gapper indicates many
learning concepts does actually have difficult points.

Through these examples, De-gapper is expected to have the following bene-
fits:

– De-gapper can find gaps from many programs automatically.
– De-gapper helps teachers find the gaps hidden in textbooks and gives them

chances to “degap” (to prepare supplemental programs between gaps).
– After inserting supplemental programs, De-gapper can re-evaluate the gaps

to check if the gaps are lowered.

Fig. 7. First example of “for” statement in K & R book, in comparison with the
previous “while” statement program.

6 Summary and future work

We proposed a “small step” teaching method for programming learning and
a tool for detecting “gaps”. We plan to develop the method and tool in the
following ways:

– Weighting new concepts:
The number of new concepts in a program is not always proportional to the
“height” of gaps, i.e., how difficult the program appears to the students?
We will have some experimental classes to measure gaps that De-gapper has
calculated and the actual gaps that students felt.

– Correspondence between new concepts and program parts:
In current implementation, the contents of new concepts are indicated by
XML paths. They should be interpreted into understandable natural lan-
guage. In addition, current implementation does not show which part of the
program corresponds to the paths.
We plan to add a feature that automatically highlights which part of a
program are new concepts or shows corresponds parts by hovering the mouse
cursor over XML paths.

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number 22500828.

Fig. 8. A proposal to prepare a supplemental program as the first example of a “for”
statement in K & R book.

References

1. Michael McCracken, Vicki Almstrum, Danny Diaz, et al. A multi-national, multi-
institutional study of assessment of programming skills of first-year CS students.
ACM, SIGCSE Bulletin, Vol.33, No.4, pp.125–180, 2001.

2. Paul Gross, Kris Powers. Evaluating assessments of novice programming environ-
ments. ACM, ICER’05, pp.99–110, 2005.

3. Essi Lahtinen, Kirsti Ala-Mutka, Hannu-Matti Jarvinen. A study of the difficulties
of novice programmers. ACM, SIGCSE Bulletin, Vol.37, Issue 3, pp.14–18, 2005.

4. Shuhaida Mohamed Shuhidan, Margaret Hamilton, Daryl D’Souza. Understanding
novice programmer difficulties via guided learning. ACM, ITiCSE ’11, pp.213–217,
2011.

5. James Spohrer, Eliot Soloway. Novice mistakes: Are the folk wisdoms correct?
ACM, CACM, Vol.29, No.7, pp.624–632, 1986.

6. Burrhus Frederic Skinner. Teaching Machines. Science, Vol.128,pp969-977,1958.
7. Brian Kernighan,Dennis Ritchie. C Programming Language (2nd Edition). Pren-

tice Hall PTR,1988.
8. BohYoh Shibata.Meikai C Gengo 2nd ed, Nyumonhen. SoftBank Creative, 2004.(in

Japanese)
9. Haruhiko Hayashi. Shin C Gengo Nyumon 2nd ed, Beginner Hen. SoftBank Cre-

ative, 2003.(in Japanese)
10. Mana Takahashi. Yasashii C 2nd ed. SoftBank Publishing, 2003.(in Japanese)
11. Stephen Kochan. Programming in C 3rd ed. Sams Publishing, 2005.
12. Greg Perry. Absolute beginner’s guide to C 2nd ed. Sams Publishing, 1994.

